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The static equilibrium of a journal rotating within a circular bush in the presence 
of a complete oil film is considered. Fluid inertia, though having negligible effect on 
load capacity and attitude angle, is shown to provide an important stabilizing 
mechanism. For any bearing (with specified geometry and lubricant) there is both 
a characteristic neutral stability curve and a characteristic operating curve which 
may intersect in two positions. Analysis of the weakly nonlinear motion, in the 
vicinity of the neutral curve, reveals the existence of stable, small-amplitude limit 
cycles which may be either subcritical or supercritical according to where the 
operating and neutral curves intersect. 

1. Introduction 
Under normal operating conditions, a journal bearing supports an external load 

by generating superambient pressures in the convergent section (0 < 6 < 'IT, figure 1) 
together with an air cavity in the divergent section - arising from the inability of 
the lubricant to sustain large subambient pressures (Savage 1977; Dowson & Taylor 
1979). In  such cavitating bearings, fluid inertia is known to be of secondary 
importance in the determination of load capacity and attitude angle (Pinkus t 
Sternlicht 1961) and is therefore neglected. In  addition Poritsky (1953), Myers (1981) 
and Gardner et al. (1985) have shown that cavitation provides an essential stabilizing 
mechanism, ensuring the stability of the rotor within the bush over a certain 
parameter range. The experimental work of Simons (1950) in particular, and also of 
Cole (1957), suggests that for subambient pressures of sufficiently low magnitude it 
is possible for a bearing to run in a stable manner with a complete oil film. From a 
theoretical standpoint, however, Poritsky (1953) and Myers (1981) have used both 
the long- and short-bearing approximations and the usual assumptions of lubrication 
theory to show that full-film journal bearings are linearly unstable under all 
conditions. Clearly there is a paradox to be resolved; once cavitation is absent the 
principle stabilizing mechanism disappears and the mathematical model needs 
refinement. In  this paper, the effect of fluid inertia is taken into account and shown 
to provide the means by which stability of a full-film journal bearing can be achieved. 
It must be stressed, however, that there is no apparent physical r e w n  why inertia 
should act aa a stabilizing (or indeed a destabilizing) mechanism. In  addition it may 
seem surprising that a feature which has negligible effect at zero order (on equilibrium 
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characteristics) may have such a vital effect at first order on stability. Here there 
is a precedent, as Gardner et al. (1984) demonstrated when considering the effect of 
cavitation boundary conditions on the stability of a journal bearing. They concluded 
that small differences in boundary conditions, having negligible effect at  zero order, 
can significantly affect the location of the stability borderline. 

For any bearing, with specified geometry and lubricant, there is a characteristic 
neutral curve in (8 ,  @)-parameter space, where E and w represent eccentricity and 
angular running speed respectively. In  addition there is a characteristic operating 
curve, defining the locus of static equilibrium positions, which may intersect the 
neutral curve in one or two positions. Following Gardner et al. (1985), the weakly 
nonlinear motion of the rotor is analysed once a position of static equilibrium becomes 
linearly unstable. Results indicate that the qualitative behaviour is quite different 
when there are two intersections of operating and neutral curves. A t  one intersection 
bifurcation may be supercritical (yielding stable small-amplitude limit cycles) or 
subcritical (yielding unstable limit cycles), whereas at  the other the converse applies. 

2. Formulation of the model 
The basic model consists of a uniform and rigid rotor, subject to an external load 

2F, and supported by two identical journal bearings which are assumed to incorporate 
a complete (360') fluid film. The rotor rotates with angular speed w about its own 
centre and is assumed to be in a position of static equilibrium. Once such an 
equilibrium becomes unstable, only symmetric whirling of the rotor is considered, for 
which each end of the rotor whirls in phase. It is then sufficient to consider one journal 
bearing only, supporting one half of the total load, as shown in figure 1. 

The motion of a Newtonian lubricant of constant density p and viscosity p,  having 
velocity components u and v in the x- and y-directions respectively (where x = R8 
measures distance azimuthally and y across the film) is described by the Navier-Stokes 
equat,ions. These reduce to the two-dimensional unsteady boundary -layer equations 
once it is assumed that gradients with respect to y are much greater than those with 
respect to x, inertia terms appearing only in the z-momentum equation 

where p is the fluid pressure. The above formulation, which considers fluid motion 
in the (z, y)-plane only, is essentially the long-bearing approximation in which flow 
along the axis of the rotor is neglected. 

The motion of the lubricant in the gap, of local film thickness h(x, t ) ,  is illustrated 
in figure 2. The surface of the rotor rotates about its centre A with speed R w ,  and 
appropriate boundary conditions are 

u = w = o  on y = 0, ] 

f ah ah 
u = R w ,  v = R w - + -  o n y = h .  

ax at 
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FIQURE 1.  A rotor, subject to external load F, operating within a complete liquid film. 

41 7 

X \ \ \ \ \ \ \ \ \ \ \ \ \  
Bush 

FIQURE 2. A section of the gap between rotor and bush, of local film thickness h(z, t ) .  

Equations (2.1) and (2.2) are normalized by introducing the non-dimensional 
quantities 

where c is the radial clearance of the bearing. In addition Reynolds number Re and 
an inertia parameter A are defined by 

pcRw C , A = - R e .  Re =- 
R Y 

Hence we obtain 

a g  
au ag -+; = 0, ae ay 0=-17 i 
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with normalized boundary conditions 

- 1  a h  a h  
ae ar U = l ,  I?=-+- o n y = h .  

3. Method of solution 

introduced (Reinhardt & Lund 1975) : 
In  order to solve (2.5) and (2.6) a first-order perturbation expansion in A is 

1 u = Uo+Au,+O(A2), 

v = fi0+A?7,+O(A2), 

p = po+Ap,+O(A2). I 
Substituting (3.1) into (2.5) and (2.6) yields, after equating powers ofA, sets of zero- 

and first-order equations and boundary conditions. The zero-order equations describe 
the familiar non-inertial model, governed by the Reynolds equation for a long 
bearing : 

% ( h ? g ) = 6 ~ + 1 2 7 .  a - a- ah aE 

At first order an inhomogeneous Reynolds equation is obtained for p1 : 

i3jE4 ajio a i  h5 azir, 
+--- 70 ae a7 +--} i o a m  * (3.3) 

The boundary conditions on the pressure for a complete film are 

F(0)  = P(27t) = 0. (3.4) 

Non-dimensional hydrodynamic force components e and 4, acting along the radial 
and tangential directions respectively, are determined via 

I = s,” p(8)  cose do, 

6 = jo2H p(B) sin 8 do, 

which, using (3.1) and (3.4), may be written as 

(3.5) 

The non-dimensional film thickness for a journal bearing with a small clearance 
ratio ( c /R)  is well approximated by 

iE=l+€coSe+o (3.7) 
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where the eccentricity, e( = ce), is the distance between A and 0 (figure l ) ,  the 
centres of the rotor and bush respectively. Utilizing (3.7), equations (3.2) and (3.3) 
are solved subject to (3.4) to give expressions for the zero- and first-order pressure 
gradients. Hence (3.6) yield 

- - 12xi 3 4  1 - 24)2 
{3(2 + 8') - (1 - E')+ (20 + 8)) F,, = ~- 

(1  - e2): '' { 35(2 + s2)2 

{l-(l-€')i} 122 6i2 
+-{l-(l-$$}-- 

+ 5E 5e2 5sa 

{3(26-e2) (2+e2)+(1 - ~ ~ ) f ( ~ ~ + 3 & ~ - 1 0 0 ) }  12'(1-24) E 

- (2+€2)(1-€2$ 35(2 + E ~ ) ~  
F -  

12' { (2 +e2) (2-k2)  -4(1 -e2):}} + O(A2),  (3.8) 
+5e(2 + s2)2 

where the attitude angle $ is the angle between the line of centres OA and the direction 
of the applied load (figure l),  and a prime denotes differentiation with respect to 7. 

In the above analysis the non-dimensional film thickness is approximated by (3.7) 
in which curvature effects, of O(c/R) ,  are omitted. Since A = ( c / R )  Re, the inclusion 
of inertia is strictly valid only for Re much greater than unity. Such a restriction on 
Re is in fact unnecessary from the standpoint of locating the neutral stability curve - as 
discussed in $4, (4.20) onwards. 

We note also that the effect of inertia is to introduce extra terms into the expressions 
(3.8) for 8 and q, the presence of which permits linear stability in some parameter 
range. This conclusion that inertia, like cavitation, provides a stabilizing mechanism 
follows via the mathematics, yet in each case no obvious physical explanation is 
apparent. 

4. Linear stability analysis 

coordinate system as shown in figure 3, where 
For considering the stability of the rotor it is appropriate to introduce a Cartesian 

X = E cos$, Y = e sin$. (4.1) 

Non-dimensional force components in the X- and Y-directions are given by Fz and 
Fu respectively 

r \  

5 = 8 cos$-& sin$+- 
;) \ 

where S is the Sommerfeld number defined by 

LRaop S=- 
Fc2 ' (4.3) 

and L is the axial length of the bearing. 
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FIQURE 3. Non-dimensional Cartesian coordinate system with origin 0, the centre of the bush. 

The non-dimensipnT1 $qunations of motion include force components which are 
nonlinear in X, Y, X, Y, X, Y and take full account of inertia: 

where 6 is a non-dimensional rotor speed 

(4.4) 

,- I 
and 2m is the mass of the rotor. 

The linear stability of a static equilibrium position (X,, Ys) is found by writing 

z = x-xs,  y = Y -  Y, (4.6) 

and expanding the right-hand side of (4.4) as a first-order Taylor series about (X,, Y,), 
subscript s denoting a steady state. Hence 

Fxs= 0, F y , = o  (4.7) 

and a%+ K,, X+ K,,Y+ B,, j.+ ~ , ~ j l + ~ , ,  g+cXy j j  = 0, 
6j2jj+ K,, X+ K,,Y+ B,, j.+ B ~ ,  Y+c,, L+cY,jj = 0, 

(4.9a) 

where 

K x y  = -S(-) aF, , K,, = -S@) 

a y  s 
are displacement coefficients, 

(4.9b) 
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are velocity coefficients, and 

are acceleration coefficients. 
This procedure, though formally correct, is nevertheless impractical since the 

evaluation of coefficients K x x ,  etc., to order A, requires that derivatives of the force 
coefficients are known to order A, e.g. 

-- - P + A F + O ( A , ) .  (4.10) 

This is not the case, and indeed the only way to proceed is to start with the force 
coefficients expanded as an asymptotic series in A, 

Fx = Px+AF>+O(Ae),  (4.11) 

each term of which is then expanded in a Taylor series about (X, ,  Y,). Essentially 
it is assumed - without proof - that the double expansion of Fx and F - ,  as a Taylor 
series and as a series in A, can be effected irrespective of order. 

aFx 
ax 

- 

The following observations can now be made : 
(i) Parameters A and S are not independent since both are directly proportional 

A = uls, (4.12) 
to rotor speed. Hence we write 

where u1 is a system parameter defined by 

(4.13) 

such that for any bearing with specified geometry, lubricant and external load, v1 
is a constant. 

(ii) The steady state solution of (4.4) is described by (4.7) which, via (4.2), yields 

cos #s  = - s&, 
sin 9, = fie,. 

(4.14) 

Furthermore, the force coefficients have been determined to order A (equations (3.8)) 
such that 

(4.15) 

where Fl and F, are functions of 6, only. Equations (4.14) and (4.15) now yield 

I cos #, = -S(AFl + O(A2)) ,  

sin$, = S(F,+O(Ae)). 
(4.16) 

A t  this stage we note that all physical solutions of (4.16) require A to be strictly 
positive. These include the ‘inertialess lubrication solution’ which, via (4.12), 
corresponds to  (4.16) correct to order A ;  vl cos #, = 0, u1 sin#, = AF,. Consequently 
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0, = in, A = ul/F2 and the Sommerfeld number S is given by the familiar expression 

S=-- 1 (2+€3(1-€$ 
F2(%) - 12ns, 

(4.17) 

With inertia taken into account, (4.17) still remains valid to order A since (4.16) yield 

1 s = - (1 + O(A2)) .  
F2 

Seeking solutions to (4.8) of the form 

(4.18) 

x = xo eE7, y = yo efis (4.19) 

leads to a characteristic equation of fourth degree in %: 

{G4 + (CXX + C y y )  W 2  + (CXX cy y - c x y  Cyx)}  K4 

+ { V x x  +BY,) 0% + (Bxx CYY + BY, c x x  - BXY C Y X  -BY, C X Y ) >  2 

+ W X X  + KY Y 1 W 2  + W X X  CY Y + KYY cxx - KXY C Y X  - KYX CXY 

+ B x x B Y Y - B x , B Y x ) ~ ~  

+ w x x  BY, +KYY Bxx--Kxr BY, -KYxBxYl % 

+ ~ ~ X X ~ Y Y - - ~ X Y ~ Y X ~  = 0. (4.20) 

The stability criterion of Libnard & Chipart (see Appendix A) is used to examine 
the roots of (4.20) and in particular, with u, specified, a critical value of angular speed 
55, is determined for each value of eccentricity e, such that for W < OC(W > W,), the 
rotor is linearly stable (unstable). Neutral stability curves in (e,, W)-parameter space 
are shown in figure 4, from which it is instructive to note that for each journal bearing 
with system parameter crl there is a characteristic neutral curve, and all such neutral 
curves reduce, in the absence of inertia, to the same curve, W = 0. 

Application of the stability criterion reveals that W, - At (see Appendix A) which, 
via (4.12) and (4.18), appears to imply that the neutral curves are asymptotic to the 
Z-axis. However, employment of the perturbation expansion (3.1) necessitates that 
h is small, thus invalidating this implication. Indeed the dotted lines shown in 
figure 4 indicate the values of E ,  below which A exceeds 0.1; e, = 0.05 (0.26) for 
u1 = 0.1 (0.5). 

In  the preceding analysis the inclusion of inertia terms of O(h), where A = ( c /R)  Re, 
and the omission of curvature terms of O(c/R),  strictly requires that Re $= 1.  
However, such a strong condition is unnecessary since the effect of curvature on 
displacement, velocity and acceleration coefficients (equation (4.9)) and on the 
corresponding location of the neutral stability curve has been fully investigated and 
found to be negligible. We may therefore conclude that, with Re of order 1, curvature 
effects are unimportant and may be ignored - in sharp contrast to O(c/R) inertia 
terms, which significantly affect the stability characteristics. 

Clearly the introduction of the system parameter u1 is to facilitate the determination 
of the neutral stability curve. For any given journal bearing however, a second system 
parameter u2 must be introduced in order to plot the locus of static equilibrium 
positions, and for this we write 

S(€,) = u2W, (4.21) 
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FIGURE 4. Neutral stability curves (ul = 0, 0.1, 0.5). 

C 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Steady-state eccentricity ratio, E ,  

FIQURE 5. Neutral stability curve (al = 0.2) with three operating curves (n9 = 1.0, 1.5, 2.5). 

which, via (4.3) and (4.5), yields 
1r3p 

cT2 = - 
(Fmc5)i' 

(4.22) 

Consequently any given journal bearing has two system parameters, u1 and u2, both 
of which are constant. Equation (4.21) enables an operating curve to be drawn 
representing the locus of equilibrium states. Figure 5 shows the neutral curve for a 
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particular value of crl and includes operating curves for three values of c2, illustrating 
how intersection may arise in none, one or two positions. At each point of intersection 
conditions are critical; W = W c  and two of the roots of (4.20) are purely imaginary, 
such that if f i  is expressed in the form 

then 

(4.23) 

(4.24) 

5. Method of multiple scales 
The weakly nonlinear motion of a rotor in a journal bearing with cavitation 

(modelled by a 180' fluid film) has been analysed by Gardner et al. (1985) using the 
method of multiple scales. For a complete fluid film with inertia included the same 
method can be applied in a similar manner, the only difference being a substantial 
increase in algebra, since the force components (Fx,Fy) are now functions of six 
arguments (equation (4.4)). Hence only a brief outline of the method is given, with 
the details in Appendix B. 

Equation (4.6) defines 347) and y(7), both of which are assumed to be small, and 
hence the equations of motion (4.4) may be expanded about an equilibrium position 
(X,, Y,) as far as third order: 

w22 = a1x+a2 y+a3j:+a4y+a55+a,y 

+ $11 x2 + a12 "y + a13xj: + a14 xy + a15 xg + a16 x$ 
+$22 y2 + . * +$a,, 

+ha,,, x3 +$a,,, x2y+$113 ~ ~ j : + $ ~ ~ ~  ~ 2 h + + ~ ~ ~  2 2 5  x'$ 

+$122xy2+a123xYj:+ ... +@666?, (5.1) 

where the a,, aij ,  aijk (1 < i,j, k < 6) are defined in Appendix B. There is a similar 
expression for W 2 y  with the a,, etc. replaced by b,, etc. 

Close to the neutral curve, supercritical bifurcation is considered, for which we 
introduce the small, real parameter 6 defined by 

6 2  = w-W,, (5.2) 

7* = 627, (5.3) 

8 = (1+6w1+s3w3+...)7. (5.4) 

(5.5) 

(5.6) 

where the wt, xt and y, are as yet unknown functions. Denoting time differentiating 
with respect to 8 by (. ), then 

and in addition slow and fast timescales defined by 

Displacements x(7) ,  y(7) are also expanded in powers of 6: 

x(s, 7 * )  = dx,(s, 7 * )  +62x2(s, 7 * )  + 632,(9,7*) + . . . , 
y(s,7*) = 6y1(s, 7* )  + 62y2(s, 7* )  + 63y3(s, 7 * )  + . . . ) 
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and hence corresponding powers of 6 may be equated in (5.1) to yield 

Order 6 
x,-a 1 1  x -a2 y , - a  3 1  x --a,y,-a 5 1  x -tZey, = 0, (5.9a) 

Order a2 
x2 - a, x2 -a2 y2 -a3 x, -a4 y2- ti5 x, - ae y2 

= - 2w, x, + a3 w1 x, + a4 0, y1 + 2a, w1 x1 + 2 4  w1 g, +$,, 2; +a,, x1 y1 

+ 813 21 xi+ a14 2 1  $1 + 6 1 5  2 1  6,  + 4 6  XI $1 +'&, y: + 623 y1$1+ ti24 ~1 

+ a25 yIx1+ 8 2 6  y1 g,+ s 3 3  2; + a34 pi+ $44 ( 5 . 1 0 ~ )  

where (5.11) 

Two additional equations, (5.9b) and (&lob) ,  are obtained by considering the 
equation of motion in the Y-direction, whilst at order S3 two further equations, (B l ) ,  
emerge, details of which are to be found in Appendix B. 

Neglecting transients, the solution to (5.9) is 

(5.12) 

where /3 is a complex constant dependent on E, only and C.C. denotes the complex- 
conjugate of the preceding expression. Substituting the above expressions into the 
right-hand sides of (5.10), the suppression of secular terms requires 

w1 = 0, (5.13) 

and the right-hand sides of (5.10) can thus be written in the form 

(5.14) 

were m,, m2 are complex constants, n,, n, real constants and all are dependent on B, 

only. The solution to (5.10) now follows: 

(5.15) 

were u,, u2 are complex constants, vl, v, real constants and all are dependent on B, 

only. We now consider equations (B 1) and suppress secular terms from the presence 
of ei"c and e-mc on the right-hand sides. The coefficients of eiac are of the form 

1 x2(s ,  7 * )  = A,(T*) eiac 8 + ~ 1 A f ( ~ * )  enac 

y2(8,?*) = / 3 ~ , ( 7 * )  einc8+u2A;(7*) e@c 8+!p2 IA1(~*)l2+c.c., 

IA1(~*)l2+c.c., 

I (5.16) 

where the 7 's  are obtained by substitution of x , z,, y1 and y ,  into the right-hand side 
of (B 1). The corresponding coefficients of e-dc are q1 and ij,. 

the 
coefficient of which is of the form B,q,+B,q,, B,, B, being functions of E, only. 

Particular integral solutions to (B 1) for x3( t )  include a secular term seissc 
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Similarly the coefficient of seine in the solution for y3(t)  is found to be a multiple 
of (Bl,ql + B, q,). Hence we require 

Bl q 1  +B2 qz = 0, (5.17) 
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which reduces, on substituting for q1 and qz, to the following complex amplitude 
equation : 

q2, q3 being functions of B, only. By writing 

(5.18) 

(5.19) 

and separating out real and imaginary'parts, the following amplitude and phase shift 
equations are derived : 

(5.20) 

(5.21) 

where qzr represents the linear growth rate (dol/dG),,,c, which is evaluated on the 
stability borderline and is positive as the rotor moves along an operating curve of 
constant CT, from a stable to an unstable position. 

The analysis of subcritical bifurcation requires the replacement of (5.2) by 

8 2  = W,-G (5.22) 

and an amplitude equation similar to (5.20) is obtained, with the coefficient of R now 
of opposite sign, 

dR 
- = -R(1;1zr+~3rR~).  (5.23) d7* 

6. Discussion of results and suggestions for experimental work 
Figure 5 illustrates the neutral stability curve for journal bearings having system 

parameter gl = 0.2. The coefficients qzr and q3r are evaluated at  various points on 
the curve, and (5.20) and (5.23) are used to examine the weakly nonlinear behaviour 
at both supercritical and subcritical speeds. Parameter space is divided into three 
distinct regions A, B and C as shown in figure 5. 

Region A :  (0 < 8, < 0.53) q3r < 0. 
For W > We, (5.20) implies that dR/dT* > 0 for all T* and so there is no evolution 

towards a periodic orbit. For W < Wc, a periodic orbit is theoretically possible with 
R2(7*) = -q2Jq3,. provided R2(0) = -qzr/q3r. Such a motion is, however, unstable via 
(5.23). 

Region B :  (0.53 < eS < 0.57) qzr > 0, 

proportional to (q2JqSr)i ,  whilst for 0 < Gc,  R(T*) + O  as T* + 00 via (5.23). 

qzr > 0, 

q3r > 0. 
For W > Wc, (5.20) implies the existence of a stable periodic orbit with amplitude 
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FIGURE 6. Neutral stability and operating curves (al = 0.0788, u2 = 12.3). 

Region C :  (0.57 G B, < 1.0) 

existence of a stable periodic orbit with amplitude proportional to ( - q2r/q3r)i. 

qzr < 0, q3= > 0. 
For W > W,, R ( T * ) + ~  as T*+OO via (5.21), whilst for 73 < 0,, (5.23) implies the 

Regions A, B and C can be characterized respectively as regions of subcritical 
(unstable) bifurcation, supercritical (stable) bifurcation and subcritical (stable) 
bifurcation. Gardner et al. (1985) identified regions analogous to A and B but did not 
find a region corresponding to C. Indeed, region C is where (dE/dO),=,e < 0, which 
does not occur for non-inertial, cavitating journal bearings since the growth rate of 
small disturbances is positive along the full length of the neutral curve. The presence 
of region C makes for the interesting possibility of discovering small-amplitude limit 
cycles at low speeds and high eccentricities. 

With a view to experimental confirmation of the key results emerging from this 
theory, namely (i) the presence and extent of a region of parameter space where 
positions of static equilibrium are to be found, and (ii) the existence of subcritical 
(stable) small-amplitude limit cycles close to the stability borderline, two bearing 
systems are now examined. Both consist of a solid steel shaft of length 0.3 m and 
diameter (2R) 0.1 m (mass 2m = 18.4 kg), supported symmetrically in two bearings 
(F = 90 N) of length-to-diameter ratio 0.5 ( L  = 0.05 m). With lubricant density p 
taken as 875 kg m-3, the two systems are characterized by clearance ratio c and 
lubricant dynamic viscosity /I, giving rise to particular values of crl and cr2: 

( c  = 5 x lop5 m), ,u = 0.001 N s mp2; crl = 0.0788, cr2 = 12.3 
. c  1 

(1) -=- 
R lo00 

c 1  
R 6 0  

(ii) - = - (c = 8.3 x m), ,u = 0.1 N s m-a; c1 = 0.608, u2 = 1.08. 

Figures 6 and 7 show the neutral stability and operating curves for cases (i) and 
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FIGURE 7. Neutral stability and operating curves (ul = 0.608, cr2 = 1.08). 

(ii) respectively. I n  case (i) stable operation is predicted for shaft speeds in excess 
of approximately 2 rad s-l. Furthermore the operating curve is well into the stable 
region at lower eccentricity ratios suggesting that such an experiment would not 
require great sensitivity. With case (ii) stable operation arises once the shaft speed 
reaches about 5 rad s-l and remains so until approximately 40 rad s-l (corresponding 
to  an eccentricity ratio of just over 0.1) when the operating curve again approaches 
the neutral stability curve. 

The assumption of no axial flow necessitates that  in an experimental test the 
bearings would require end seals whose radial resistance to  shaft movement, together 
with that presented by the coupling connecting the shaft to the drive motor, would 
have to be minimal. Such conditions have been met in previous experimental studies 
of bearing-influenced rotor dynamics. For the above cases the predicted minimum 
subambient pressures in the lubricant film are of the order - lo4 N m-2 gauge, for 
which cavitation would not be expected to occur. Such experiments would, therefore, 
present a clear opportunity to  enable verification of the stabilizing action of fluid 
inertia in non-cavitating fluid-film bearings as predicted. 

Appendix A 
Necessary and sufficient conditions for all the roots of the real equation 

A0fi4+A1n3+A2nl!+A3n+A, = 0 

to have negative real parts are (Gantmacher 1959) : 

(i) A,  > 0, (ii) A ,  > 0, (iii) A,  > 0, (iv) A, > 0, 

(v) A , A 2 A 3 - A ; A , - A , A ;  > 0. 

On application to (4.20) these criteria reduce to  the single requirement 

aoW4+a,152+a2 > 0, 
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where the at (dependent upon E ,  only) are of order At (i = 0,1,2). For all admissible 
E ,  it can be shown that a, and a, are negative, and hence for a2 < 0, Gc = 0 whilst 
for a2 > 0, sjc - At .  

Appendix B 

These coefficients are evaluated to order A, subject to the assumption that the 
double expansion of Fx and FY as a Taylor series and as a series in A can be effected 
irrespective of order (see $4). 
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